
Eur. Phys. J. B 13, 265–269 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The magnetic properties of the spin liquid state of the antiferromagnetic Heisenberg model on
the kagomé lattice are investigated within the self-consistent mean-field theory. The results show that the
spin liquid ground-state energy per site is Eg/NsJ = −0.859, which is in very good agreement with the
best numerical estimates. The spin structure factor and spin susceptibility are also discussed.

PACS. 75.10.Jm Quantized spin models – 67.40.Db Quantum statistical theory; ground state, elementary
excitations – 75.50.Ee Antiferromagnetics

The magnetic properties of the two-dimensional (2D) frus-
trated quantum Heisenberg antiferromagnet have received
considerable attention in the last decade, which perhaps
is motivated partly by the search for the quantum disor-
dered spin liquid ground-state and possible relationship
to the high temperature superconductivity in copper ox-
ide materials [1]. The numerical simulation and analyti-
cal approaches strongly support the existence of the an-
tiferromagnetic (AF) long-range-order (AFLRO) for the
Heisenberg antiferromagnet on the square lattice with the
reduced moment of about 60% of its classical value [2].
Anderson [3] argued that strong spin frustration on the
triangular lattice may generate a novel resonating-valence-
bond spin liquid ground-state without AFLRO, in particu-
lar, Kalmeyer and Laughlin [4] argued that the resonating-
valence-bond state for the triangular lattice is similar to
the fractional quantum Hall state for bosons. Several nu-
merical simulations were interpreted as not in favour of
their arguments [5]. However, the situation seems less clear
on the kagomé lattice due to the geometric frustration,
as in the triangular lattice, but the lower coordination
number, as in the square lattice. Although the classical
ground-state of the kagomé lattice is highly degenerate
as shown by many authors [6], it is believed that such
degeneracies may be lifted by thermal or quantum fluctu-
ations [7]. The interest in the AF Heisenberg model on the
kagomé lattice is that it is an attractive candidate in 2D
involving only nearest-neighbor coupling with a low co-
ordination number to display a quantum disordered spin
liquid ground-state for the spin one-half. On the other
hand, a series of experiments on the multilayer 3He films
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have shown that some anomalous physical properties of
3He absorbed on graphite can be described by the AF
Heisenberg model on the kagomé lattice [8]. Various nu-
merical and analytical techniques have been used to study
the kagomé lattice [9–16], and several different types of the
quantum ground-state have been proposed, in particular,
Singh and Huse [10] have calculated the three-sublattice
magnetism based on the high-order perturbation theoret-
ical treatment, which is believed to be accurate, and pre-
dicted that the ground-state is strongly disordered due to
the large degeneracy of the classical ground-state config-
urations.

In this paper, we study the magnetism of the AF
Heisenberg antiferromagnet on the kagomé lattice within
the self-consistent Tyablikov’s spin Green’s function the-
ory [17] under the Kondo-Yamaj decoupling scheme [18].
The advantage of this approach is that the unwanted hard-
core condition of the quantum spin operators, i.e., the spin
one-half raising and lowering operators behave as fermions
on the same site and as bosons on different sites, is sat-
isfied by the Pauli algebra. Within this theoretical frame-
work, we obtain the spin liquid ground-state energy per
site Eg/NsJ = −0.859, which is in very good agreement
with the best numerical results [9].

The simple way to visualize the kagomé lattice is to re-
gard the triangular lattice as consisting of four sublattices
and remove the spin on one of the sublattices, therefore
there are three inequivalent sublattices A, B, and C even
without AFLRO, where the spins in A, B, and C sub-
lattices pointing to the vertices of an equilateral triangle
are placed with no two nearest-neighbors pointing in the
same direction (Fig. 1), then the kagomé lattice structure
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Fig. 1. The spin configuration of the sublattice A, B, and C
on the kagomé lattice.

is much more complicated than the square and triangular
lattices. For convenience, the equilateral triangle A, B, C
is chosen as the cell as shown in Figure 1, in this case the
kagomé lattice is reduced as the triangular structure, then
the position of the spins in a cell i is specified by the vector
Xis = Ri + ds, with s = A, B, C, i.e., each cell contains
three spins, while the lattice vector Ri and the reciprocal
lattice vectorKj satisfy the relationship asRi·Kj = 2πδij .
With the above definition, the AF Heisenberg model on
the kagomé lattice is described by the Hamiltonian as,

H = J
∑
is,ηs

Sis · Sis+ηs

= J
∑
is,ηs

[
1
2

(S+
is
S−is+ηs + S−isS

+
is+ηs

) + SzisS
z
is+ηs ], (1)

where J > 0, the sum is over all sites Xis and for each
Xis , it is over nearest-neighbors ηs of the kagomé net, and
S+
is

and S−is are the raising and the lowering operators of
Szis respectively.

The quantum spin operators obey the Pauli spin al-
gebra, which can be discussed in terms of the two-time
spin Green’s function within the Tyablikov’s scheme [17].
In our present case, because there are three inequivalent
spins A, B, and C, then the spin two-time Green’s func-
tion is a matrix which can be defined as,

D(k, t− t′) =DAA(k, t− t′) DAB(k, t− t′) DAC(k, t− t′)
DBA(k, t− t′) DBB(k, t− t′) DBC(k, t− t′)
DCA(k, t− t′) DCB(k, t− t′) DCC(k, t− t′)

 , (2)

where Dss′(is − js′ , t− t′) = 〈〈S+
is

(t);S−js′ (t
′)〉〉. Since the

time-Fourier transform of the two-time Green’s function
satisfies the equation,

ω〈〈Â; B̂〉〉ω = 〈[Â, B̂]〉+ 〈〈[Â,H]; B̂〉〉ω, (3)

then the equation of motion of the spin two-time Green’s
function Gss

′
(is − js′ , t − t′) in equation (2) can be

evaluated as,

ωGss
′
(is − js′ , ω) = δisjs′ 〈S

z
is〉+

∑
ηs

〈〈S+
is+ηs

Szis

− S+
is
Szis+ηs ;S

−
js′
〉〉ω. (4)

The second order spin Green’s functions appear in the
right hand side of equation (4), therefore in common prac-
tice the second-order spin Green’s function is decoupled
based on the Tyablikov’s scheme [17]. However, the ab-
sence of the simple three sublattice magnetic order on
the kagomé lattice has been convincingly demonstrated by
Singh and Huse [10], then in the following discussions, we
only study the system in the case 〈Szis〉 = 0, i.e., the quan-
tum disordered spin liquid state without AFLRO. In this
case, the first term in the right hand of equation (4) for the
Green’s function GAA(i− j, ω) is equal to zero, and there-
fore the standard Tyablikov’s approximation is not valid,
and we should decouple the spin Green’s function (4) at
a stage one-step further than the Tyablikov’s decoupling
and make the equation of motion of the higher order of
fluctuations, e.g., that for the term in equation (4) is,

ω〈〈S+
is
Szis+ηs ;S

−
js′
〉〉ω = 2δisjs′ 〈S

z
isS

z
is+ηs〉

− δis+ηsjs′ 〈S
+
is
S−is+ηs〉+ 2J

∑
η′
s′′

〈〈1
2
S+
is
S+
is+ηs

S−is+ηs−η′s′′

− 1
2
S+
is
S+
is+ηs−η′s′′

S−is+ηs + S+
is+η′s′′

SzisS
z
is+ηs

− S+
is
Szis+η′s′′

Szis+ηs ;S
−
js′
〉〉ω. (5)

Kondo and Yamaji [18] have generalized this Green’s func-
tion theory to discuss the one-dimensional AF Heisen-
berg model, they obtained the ground-state energy of
the one-dimensional AF Heisenberg model to be Eg =
−0.4156(2J), which is only 6% higher than the exact
Bethe-ansatz value [19] of Eg = −0.4431(2J), and is close
to the result of Eg = −0.4196(2J) obtained [20] based on
the Jordan-Wigner transformation [21]. The theory has
been used to discuss the 2D square lattice in the case of
〈Szi 〉 = 0 by many authors [22,23], and the result [22,23] of
the ground-state energy per bond of the 2D AF Heisenberg
model is Eg/NZJ = −0.310, which is in very good agree-
ment with the result of Eg/NZJ = −0.319 obtained [24]
based on the resonating-valence-bond state. This theory
has been applied to study the 2D doped antiferromagnet
within the t-J model [25]. In this paper, we apply this
theory to the kagomé lattice. Following previous discus-
sions [18,22,23], we decouple the four operator terms in
the right-hand side of equation (5) as,

〈〈S+
is
S+
is+ηs

S−is+ηs−η′s′′
;S−js′ 〉〉ω →

α〈S+
is+ηs

S−is+ηs−η′s′′
〉〈〈S+

is
;S−js′ 〉〉ω

+ [δηsη′s′′ + (1− δηsη′s′′ )]〈S
+
is
S−is+ηs−η′s′′

〉〈〈S+
is+ηs

;S−js′ 〉〉ω ,
(6a)
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〈〈S+
is
S+
is+ηs−η′s′′

S−is+ηs ;S
−
js′
〉〉ω →

α〈S+
is
S−is+ηs〉〈〈S

+
is+ηs−η′s′′

;S−js′ 〉〉ω
+ α〈S+

is+ηs−η′s′′
S−is+ηs〉〈〈S

+
is

;S−js′ 〉〉ω , ηs 6= η′s′′ , (6b)

〈〈S+
is+η′s′′

SzisS
z
is+ηs ;S

−
js′
〉〉ω →

α〈SzisS
z
is+ηs〉〈〈S

+
is+η′s′′

;S−js′ 〉〉ω

=
1
2
α〈S+

is
S−is+ηs〉〈〈S

+
is+η′s′′

;S−js′ 〉〉ω , ηs 6= η′s′′ , (6c)

〈〈S+
is
Szis+η′s′′

Szis+ηs ;S
−
js′
〉〉ω →

[δηsη′s′′ + (1− δηsη′s′′ )]〈S
z
is+η′s′′

Szis+ηs〉〈〈S
+
is

;S−js′ 〉〉ω

=
1
2

[δηsη′s′′ + (1− δηsη′s′′ )]〈S
+
is+η′s′′

S−is+ηs〉〈〈S
+
is

;S−js′ 〉〉ω,
(6d)

where 2〈SzisSzis+ηs〉 = 〈S+
is
S−is+ηs〉 and 2〈Szis+η′s′′S

z
is+ηs〉 =

〈S+
is+η′s′′

S−is+ηs〉 have been used since there is the rota-
tional symmetry in the quantum spin systems without
AFLRO. In order not to violate the sum rule of the cor-
relation function 〈S+

is
S−is〉 = 1/2 in the case 〈Szis〉 = 0,

the important decoupling parameter α has been intro-
duced as discussed by Kondo and Yamaji [18] and many
others [22,23], which can be regarded as the vertex correc-
tions. With the help of the above decoupling scheme, we
obtain the two-time spin Green’s functions of the kagomé
lattice as,

D(k, ω) =

3∑
j=1

Γ1j(k, ω)aj1(k) Γ1j(k, ω)aj2(k) Γ1j(k, ω)aj3(k)
Γ2j(k, ω)aj1(k) Γ2j(k, ω)aj2(k) Γ2j(k, ω)aj3(k)
Γ3j(k, ω)aj1(k) Γ3j(k, ω)aj2(k) Γ3j(k, ω)aj3(k)


× 1

[ω2 − ω2
1(k)][ω2 − ω2

2(k)][ω2 − ω2
3(k)]

, (7)

where Γ (k, ω) is the adjugate matrix of

∆(k, ω) =0
@
ω2−(Z11+Z12γk1) Z13γk4−Z12γk5 Z13γk6−Z12γk7

Z13γ
∗
k4−Z12γ

∗
k5 ω2−(Z11+Z12γk2) Z13γk8−Z12γk9

Z13γ
∗
k6−Z12γ

∗
k7 Z13γ

∗
k8−Z12γ

∗
k9 ω2−(Z11 + Z12γk3)

1
A,

(8)

and

a(k) = 8Jχ

−2 γk4 γk6

γ∗k4 −2 γk8

γ∗k6 γ
∗
k8 −2

 , (9)

with Z11 = 8J2(2αC + 1), Z12 = 8J2αχ, Z13 = Z11/2 +
2Z12, γk1 = cos ky + cos(ky − kx), γk2 = cos kx +
cos ky, γk3 = cos kx + cos(ky − kx), γk4 = (1 + eiky)/2,

γk5 = (eikx + ei(ky−kx))/2, γk6 = (1 + ei(ky−kx))/2, γk7 =
(e−ikx + eiky)/2, γk8 = (1 + e−ikx)/2, γk9 = (e−iky +
ei(ky−kx))/2, and the order parameters χ = 〈S+

is
S−is+ηs〉

and C =
∑

ηs 6=ηs′
〈S+
is+ηs

S−is+ηs′ 〉, while three branch spectra

ω1(k), ω2(k), and ω3(k) are the solution of the determi-
nant |∆(k, ωj)| = 0. According to the spectral representa-
tion of the correlation function,

〈B̂Â〉 = i

∞∫
−∞

dω
2π
〈〈Â; B̂〉〉ω+i0+ − 〈〈Â; B̂〉〉ω−i0+

eβω − 1
e−iω(t−t′),

(10)

the self-consistent equations based on the spin Green’s
function (7) can be obtained to determine the order pa-
rameters χ, C and decoupling parameter α, while the
ground-state energy per site obtained from equation (1)
is Eg/NsJ =

∑
ηs

3
2 〈S

+
is
S−is+ηs〉 = 6χ.

We are now ready to discuss the magnetic property
of the AF Heisenberg model on the kagomé lattice. We
have performed the numerical calculation, and the re-
sult of the spin liquid ground-state energy per site is
Eg/NsJ = −0.859. For the comparison, some results of
the ground-state energy obtained from the numerical sim-
ulations and our present theoretical result are listed in
Table 1. As shown in Table 1, the present spin liquid en-
ergy seems to be closer to the extrapolated finite lattice
result of Leung and Elser [12], and only is 3% higher than
the best numerical estimates by Zeng and Elser [9]. Our
result is almost identical with that of the variational cal-
culation by Sindzingre, Lecheminant and Lhuillier [14].
For further understanding the ground-state property,
the spin-spin correlations have been calculated, and the
results are given in Table 2, where the spin pairs are iden-
tified in terms of their separation, i.e., the distance r as
well as the minimum path length of bonds n connecting
the two spins. These results are in very good agreement
with the numerical simulations [9,12], and show that the
correlations decay rapidly with separation, which is the
characteristic property of the spin liquid ground-state. As
a by-product, we have also studied the spin liquid state
of the 2D AF Heisenberg model on the triangular lat-
tice, the result shows that the spin liquid energy per site
is Eg/NJ = −0.966, which is essentially identical to the
results obtained by Kalmeyer and Laughlin [4] and Lee
and Feng [5] based on the resonating-valence-bond state
without AFLRO, but higher than the results of Huse and
Elser [5] for an AFLRO state, the correlations decay slowly
with separation. This result, in the comparison with the
kagomé lattice case, suggests the possibility of an ordered
ground-state on the triangular lattice.

An important experimental characterization of the
ground-state is the spin structure factor S(k) =
1
N

∑
ij

〈S+
i S
−
j 〉 exp[ik(Ri − Rj)], which has been computed

within the present framework at the zero temperature,
and the result is plotted in Figure 2, where for con-
venience the original coordinate system has been trans-
formed to an orthogonal one. The maxima of S(k) in
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Table 1. A comparison of the ground-state energy per site for the antiferromagnetic Heisenberg model on the two-dimensional
kagomé lattice.

Authors Eg/NsJ Method
Zeng and Elser [9] −0.882 Finite lattice
Yang, Warman and Girvin [13] −0.788 Variational Monte-Carlo
Leung and Elser [12] −0.877 Finite lattice
Sindzingre, Lecheminant and Lhuillier [14] −0.84 Variational Monte-Carlo
The present work −0.859 Green’s function method

Table 2. A comparison of the spin-spin correlation for the antiferromagnetic Heisenberg model on the kagomé lattice, where
space of the nearest neighbor spins is unity.

n r Zeng and Elser [9] Leung and Elser [12] The present work

path length distance 〈SzisSzis+ηs〉 〈SzisSzis+ηs〉
1 1 −0.0728 −0.0731 −0.0716

2
√

3 0.0097 0.0039 0.0138

2 2 0.0137 0.0176 0.0121

3 2 −0.0004 ∼ 0.0005 −0.0030 −0.0085

Fig. 2. Zero temperature spin structure factor S(k) of the
antiferromagnetic Heisenberg model on the kagomé lattice. The
global maxima are at four wave vectors.

Figure 2 occur at four wave vectors, which is consis-
tent with the results obtained within the large-N expan-
sion [15]. The interesting magnetic quantity associated
with the spin structure factor in the present spin liquid
state is the temperature dependence of the spin suscepti-
bility χ = (g2µ2

B/NKBT )
∑
ij

〈Szi Szj 〉, where g is the Landa

factor and µB is the Bohr magneton, and the result of
the spin susceptibility is shown in Figure 3 (solid line).
For comparison, the result of the spin susceptibility of
the 2D AF Heisenberg antiferromagnet on the triangular
lattice is also plotted in Figure 3 (dashed line). These re-

Fig. 3. The spin susceptibility of the antiferromagnetic Heisen-
berg model on the kagomé lattice (solid line) and the triangular
lattice (dashed line) as a function of temperature.

sults indicate that values of the spin susceptibility on the
kagomé lattice are decreased rapidly with increasing tem-
peratures for temperature T > J , which is in contrast to
the triangular lattice case, where the values of the spin sus-
ceptibility are decreased slowly with increasing tempera-
tures for temperature T > J . However, we should mention
that at very low temperatures the spin susceptibility in
the kagomé lattice decay slowly with decreasing tempera-
tures, which is not consistent with the common spin liquid
behavior. Kondo and Yamaj’s treatment [18] for the one-
dimensional AF Heisenberg model suffers from the same
weakness. Probably, it can be cured by including fluctua-
tions beyond the mean-field theory. Finally we also note
that the spin excitation spectrum of the kagomé lattice
has been discussed by Waldtmann and Everts [27].
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A natural question is why is this self-consistent mean-
field Green’s function theory so useful to treat the
quantum spin systems without AFLRO? To our present
understanding, there are at least three reasons: (1) the
unwanted hard-core condition of the quantum spin op-
erators is exactly satisfied in the actual calculations. (2)
The sum rule of the spin Green’s function is always sat-
isfied, and (3) the rotational symmetry in the quantum
spin systems without AFLRO is not unphysically broken
in this self-consistent mean-field Green’s function theory.
For the spin systems without AFLRO, the low lying ex-
citations described are essentially spin waves propagating
in a short-range-order with a correlation length. Many au-
thors [18,22,23] have employed this self-consistent mean-
field Green’s function theory to study the one-dimensional
Heisenberg spin system and 2D AF Heisenberg spin sys-
tem on the square lattice, they obtained results which have
a satisfactory temperature dependence over the whole
temperature region from a qualitative view point.

In summary, we have discussed the magnetic property
of the spin liquid state of the AF Heisenberg model on
the kagomé lattice within the self-consistent mean-field
Green’s function theory under the Kondo and Yamaji’s
decoupling scheme [18,22]. It is shown that the spin liq-
uid ground-state energy per site of the kagomé lattice is
Eg/NsJ = −0.859, which only is 3% higher than the best
numerical estimate [9]. The theory also gives reasonable
gross features of the spin structure factor and spin suscep-
tibility for the kagomé lattice.
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